ar X iv : a st ro - p h / 07 02 60 4 v 1 2 2 Fe b 20 07 Magnetohydrodynamic evolution of magnetic skeletons

نویسندگان

  • Andrew L. Haynes
  • Clare E. Parnell
  • Klaus Galsgaard
  • Eric R. Priest
چکیده

The heating of the solar corona is likely to be due to reconnection of the highly complex magnetic field that threads throughout its volume. We have run a numerical experiment of an elementary interaction between the magnetic field of two photospheric sources in an overlying field that represents a fundamental building block of the coronal heating process. The key to explaining where, how and how much energy is released during such an interaction is to calculate the resulting evolution of the magnetic skeleton. A skeleton is essentially the web of magnetic flux surfaces (called separatrix surfaces) that separate the coronal volume into topologically distinct parts. For the first time the skeleton of the magnetic field in a 3D numerical MHD experiment is calculated and carefully analysed, as are the ways in which it bifurcates into different topologies. A change in topology normally changes the number of magnetic reconnection sites. In our experiment, the magnetic field evolves through a total of six distinct topologies. Initially, no magnetic flux joins the two sources. Then a new type of bifurcation, called a global double-separator bifurcation, takes place: this bifurcation is likely to be one of the main ways in which new separators are created in the corona (separators are field lines at which 3D reconnection takes place). This is the first of five bifurcations in which the skeleton becomes progressively more complex before simplifying. Surprisingly, for such a simple initial state, at the peak of complexity there are five separators and eight flux domains present.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007